上一页 全文阅读 下一页

第124章 我来当主讲人?(5)

己的世界中。

“在这里引入由朗兰兹猜想导出的重要定理,对于自守形式f,其系数ap在特定素域上生成代数整数环,使得chpmn的分母被约束为模数n的因子,所以分数陈数的分母n必须整除模数n,解释实验中仅观测到n2,3,5等的现象!”

然后将模形式fz嵌入高维陈-西蒙斯理论,完成分数陈数的微分几何实现,定义分数曲率形式:

ΩmnfzΩstd

利用模变换性质fcz+daz+bcz+dkfz,证明修正曲率满足广义bianchi恒等式!

一口气写完证明过程,抬起头,陈辉才发现报告厅中早已人去楼空,只剩下袁新毅李泽翰几人还在等着他。

你的数学等级由2级76%提升到77%

你的数学等级由2级77%提升到78%

你的数学等级由2级81%提升到82%

与此同时,一连串的弹幕在眼前闪现,数学熟练度竟然一下子提升了6%!

这让他想到了几个月前在安老师指点下顿悟的场景,果然,不管是学习还是其他,除了勤奋刻苦的练习外,一些机缘巧合的灵感也是必不可少的。

这一次顿悟的效果,都快抵得上他看半个月论文了。

不过他也知道,所谓的顿悟,说是厚积薄发或许会更精准些,如果没有这些天的不懈积累,也不可能有此时的顿悟。

“你这是,分数陈类的微分几何实现?”

袁新毅盯着陈辉的草稿纸看了片刻后,眼中满是惊讶的问了一句。

早在十几分钟前,他就大概看懂陈辉在做什么了,所以在讲座结束后并没有打扰陈辉。

“是的,老师,您帮我看看,有没有什么疏漏的地方?”

陈辉有些忐忑。

在他看来,这个斯坦福大牛团队都没能解决的问题,不至于会这么简单,所以一定是他的方法有什么疏漏的地方。

袁新毅点头,刚才他担心打扰到陈辉,并没有完整的看完所有证明过程。

“引入朗兰兹框架为分数陈类提供数论基础的严格数学定义,解决微分几何框架的局限性!”

整个推演过程在袁新毅眼中自然不算复杂,只花了几分钟时间,他就看完了整个推演过程。

“我给你的论文,你看了几篇?”

“时间有限,只看完了五篇。”

上一页 全文阅读 下一页
  • 今日热门
  • 本周排行
  • 阅排行
  • 年度排行
  • 最新更新
  • 新增小说